Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells.
نویسندگان
چکیده
The regulation of myogenic progenitor cells during muscle regeneration is not clearly understood. We have previously shown that the Foxk1 gene, a member of the forkhead/winged helix family of transcription factors, is expressed in myogenic progenitor cells in adult skeletal muscle. In the present study, we utilize transgenic technology and demonstrate that the 4.6 kb upstream fragment of the Foxk1 gene directs beta-galactosidase expression to the myogenic progenitor cell population. We further establish that Sox15 directs Foxk1 expression to the myogenic progenitor cell population, as it binds to an evolutionarily conserved site and recruits Fhl3 to transcriptionally coactivate Foxk1 gene expression. Knockdown of endogenous Sox15 results in perturbed cell cycle kinetics and decreased Foxk1 expression. Furthermore, Sox15 mutant mice display perturbed skeletal muscle regeneration, due in part to decreased numbers of satellite cells and decreased Foxk1 expression. These studies demonstrate that Sox15, Fhl3 and Foxk1 function to coordinately regulate the myogenic progenitor cell population and skeletal muscle regeneration.
منابع مشابه
Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2.
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpre...
متن کاملSOX15 and SOX7 differentially regulate the myogenic program in P19 cells.
In this study, we have identified novel roles for Sox15 and Sox7 as regulators of muscle precursor cell fate in P19 cells. To examine the role of Sox15 and Sox7 during skeletal myogenesis, we isolated populations of P19 cells with either gene stably integrated into the genome, termed P19[Sox15] and P19[Sox7]. Both SOX proteins were sufficient to upregulate the expression of the muscle precursor...
متن کاملSox15 is required for skeletal muscle regeneration.
The Sox genes define a family of transcription factors that play a key role in the determination of cell fate during development. The preferential expression of the Sox15 in the myogenic precursor cells led us to suggest that the Sox15 is involved in the specification of myogenic cell lineages or in the regulation of the fusion of myoblasts to form myotubes during the development and regenerati...
متن کاملSOX15 regulates proliferation and migration of endometrial cancer cells
The study aimed to investigate the effects of Sry-like high mobility group box 15 (SOX15) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SO...
متن کاملFoxk1 recruits the Sds3 complex and represses gene expression in myogenic progenitors.
Previous studies have established that Foxk1 (forkhead box k1) plays an important role in skeletal muscle regeneration. Foxk1 regulates the cell-cycle progression of myogenic progenitors by repressing the cell-cycle inhibitor gene p21. However, the underlying mechanism is not well understood. In the present study, we report the identification of Sds3 (suppressor of defective silencing 3) as an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2007